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An Optimal Tracking Neuro-Controller
for Nonlinear Dynamic Systems

Young-Moon Park, Fellow, IEEE, Myeon-Song Choi, Member, IEEE, and Kwang Y. Lee, Senior Member, IEEE

Abstract— Multilayer neural networks are used to design an
optimal tracking neuro-controller (OTNC) for discrete-time non-
linear dynamic systems with quadratic cost function. The OTNC
is made of two controllers: feedforward neuro-controller (FFNC)
and feedback neuro-controller (FBNC). The FFNC controls the
steady-state output of the plant, while the FBNC controls the
transient-state output of the plant. The FFNC is designed using
a novel inverse mapping concept by using a neuro-identifier. A
generalized backpropagation-through-time (GBTT) algorithm is
developed to minimize the general quadratic cost function for
the FBNC training. The proposed methodology is useful as an
off-line control method where the plant is first identified and
then a controller is designed for it. A case study for a typical
plant with nonlinear dynamics shows good performance of the
proposed OTNC.

1. INTRODUCTION

RADITIONAL controller design usually involves com-

plex mathematical analysis and yet has many difficulties
in controlling highly nonlinear plants. To overcome these
difficulties, the number of new approaches using neural net-
works for control has increased significantly in recent years.
The use of neural networks’ learning ability helps controller
design to be rather flexible, especially when plant dynamics
are complex and highly nonlinear. This is a distinct advantage
over traditional control methods.

Poggio and Girosi [1] stated that the problem of learning
between input and output spaces is equivalent to that of
synthesizing an associative memory that retrieves appropriate
output when the input is present and generalizes when a new
input is applied. It is equivalent to the problem of estimating an
input—output transformation using given input—output pairs as
training sets. It can also be included in the classical framework
of approximation theory.

Nguyen and Widrow [2] showed the possibility of using
neural networks in controlling a plant with high nonlinearities.
They exploited the neural networks’ self-learning ability in
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the Truck—Backer problem. Chen {3] proposed a self-tuning
adaptive controller with neural networks, and Iiguni and Sakai
[4] constructed a neural network controller combined with
linear optimal controller to compensate for the uncertainties
in model parameters. Recently, Ku and Lee [5] proposed
an architecture of diagonal recurrent neural networks for
identification and control and applied it to a nuclear reactor
control problem [6]. There are a number of other cases in
which neural networks’ learning ability is applied for plant
control [7]-[11].

The use of neural networks in control has been focused
mostly on the model reference adaptive control (MRAC)
problem [3], [51-[11]. This paper introduces a new class
of control problems, namely the optimal tracking problem,
which minimizes a general quadratic cost function of tracking
errors and control efforts. This results in a hybrid of feedback
and feedforward neuro-controllers in parallel. The feedforward
neuro-controller (FFNC) generates the steady-state control
input to keep the plant output to a given reference value, and
the feedback neuro-controller (FBNC) generates the transient
control input to stabilize error dynamics along the optimal
path while minimizing the cost function. A novel inverse
mapping concept is developed to design the FFNC using a
neuro-identifier.

The use of general quadratic cost function provides “opti-
mal” performance with respect to tradeoffs between the track-
ing error and control effort. Since the cost function is defined
over a finite time interval, a generalized backpropagation-
through-time (GBTT) algorithm is developed to train the feed-
back controller by extending the Werbos’ backpropagation-
through-time (BTT) algorithm [10], which was originally
developed for the cost function for the tracking error alone.

The control methodology in this paper is useful as an off-
line control method where the plant is first identified and then
a controller is designed for it. This assumes that the plant can
be identified without making the plant unstable. Repeatability
of the control experiment is also assumed in order to tune the
parameters of the neural networks. This is often the case when
we design a supplementary controller for an existing control
system in a power plant.

The organization of the paper is as follows. Section II
presents the formulation of the optimal tracking control
problem and architecture for the optimal tracking neuro-
controller (OTNC). Section III shows the development
of neuro-controllers including their training algorithms. In
Section IV the proposed OTNC is implemented in a typical
nonlinear plant, and the conclusion is drawn in Section V.

1045-9227/96$05.00 © 1996 IEEE
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II. PROBLEM FORMULATION

An optimal tracking control problem is first formulated in
this section with an appropriate justification for the use of
a general quadratic cost function. Motivation for the use of
a feedforward controller is illustrated with the aid of linear
optimal control theory. Finally, an architecture is given for
the OTNC.

A. Optimal Tracking Problem

We consider a system in the form of the general nonlinear
autoregressive moving average (NARMA) model

Y1) = F(Uk) Ye—1)s """ s Y(kmnt1)» Uk)
u(k—l)) M u(k—m+1)) (1)

where y and w, respectively, represent output and input vari-
ables, k& represents time index, and n and m represent the
respective output and input delay orders.

When the target output of a plant holds up for some time
and varies from time to time, the control objectives can be
defined as follows [12]:

1) Minimize the summation of the squares of regulating

output error and the squares of input error in transient.

2) Reduce the steady-state error to zero.

The above control objectives can be achieved by minimizing
the following well-known quadratic cost function:
N

(Qret — Ypt1))? + Rtres — uiy)?) (@)
k=1

1
J=3

where yrer is a reference output, u,er is the steady-state input
corresponding to yrf, and ¢ and R are positive weighting
factors. This quadratic cost function or the performance index
not only forces the plant output to follow the reference, but
also forces the plant input to be close to the steady-state value
in maintaining the plant output to its reference value.

It should be noted that the control input found by minimiz-
ing the performance index (2) is subjective and is “optimal”
only with respect to a given set of values of the weighting
factors ) and R. The choice of the weighting factors is done
with engineering judgment and is often performed iteratively
by observing the system responses in light of design spec-
ifications such as overshoot and rise time. Another aspect
to be noted is that the quadratic performance index (2) is a
very general optimization criterion. By properly choosing the
weighting factors and/or the limit of summation, NN, different
control objectives can be achieved. For example, by setting
N =1,R =0, and @ = 1, the performance index becomes
the usual instantaneous error [12].

The instantaneous error alone as a performance index tends
to exert large inputs and causes the plant to oscillate around
the tracking reference. On the other hand, the quadratic perfor-
mance index (2) limits the control energy to be expanded over
some time interval while minimizing an accumulated error. For
linear time-invariant dynamic systems, this performance index
leads to a fixed feedback gain matrix as N goes to infinity.

Before solving the above control problem for a general
nonlinear system, restriction of the model to a linear system
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will be helpful in gaining an insight for the need for both
feedforward and feedback controls. A linear counter part to
the NARMA model (1) is the following linear time-invariant
system:
T(ket1) = AZ(r) + Bug

Yewy = C(ry 3
where z is an n-dimensional state vector, and A, B, and C are
constant matrices of appropriate dimension. When the output
Y(x) has the set point y.er in steady state, then the above state
equation becomes

Lref = A-Tref + Buges

Yref = C-Tref (4')
where z.¢ is the state vector corresponding to y,e¢ in steady

state [13]. By subtracting (4) from (3) and shifting the vectors
as

u/(k) = U(k) — Uref (52)
x’(k) =T(k) — Tref (5b)
Y(ky = Y(k) — Yref (59

the optimal tracking problem, (2) and (3), is converted to the
optimal regulating problem with zero output in steady state

Tlnt1) = Azl + Bugy

Yiry = Cxly (6)
with the quadratic cost function
N
T =5 D (QWike)® + Rlufein)?). 9
k=1

The control law for the optimal regulator problem defined
by (6) and (7) for N = oo is given as

gy = Faiy (®)

where I is the optimal feedback gain matrix obtained by
solving an algebraic matrix Riccati equation [12]. Thus from
(5a), the optimal control for the original linear system, (3), is

U(k) = F-T/(k) + Uret- ®

This shows an important observation that the control input
consists of two parts, feedforward and feedback

Uy = usp(()) + U g (Yrer) (10)

where gy represents the feedback control, and s represents
the feedforward control corresponding to the steady-state
output yrer. When the problem is limited to the case where
Urer €Xists for any yrer, it is reasonable to assume that the
control input for a nonlinear system can also be separated into
feedforward and feedback parts. The role of the feedforward
control is to keep the plant output to the reference value in
steady state, and that of the feedback control is to stabilize the
tracking error dynamics during transient [14].

There have been a number of studies in solving the track-
ing control problem with feedforward and feedback controls
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Fig. 1. Block diagram for the optimal tracking neuro-controller.

[15], [16]. Meystel and Uzzaman [15] used an algorithmic
procedure, approximate inversion, to find the feedforward
control input for a given reference trajectory; however, while
guaranteeing admissible solutions, it leads to exhaustive binaty
search. Then, they used a simple constant-gain proportional
control for feedback control input. Jordan and Rumelhart
[16] used an inverse learning model to find the feedforward
control when the reference trajectory of plant output was given.
However, it did not provide an optimal controller for the
optimal tracking problem defined with the general quadratic
performance index (2).

While an explicit solution for the optimal tracking problem
is available for linear systems, it is not possible for nonlinear
systems in general. liguni and Sakai [4] tried to design a
nonlinear regulator using neural networks by assuming the
plant to be linear, but with uncertain parameters. For linear
systems, minimization of the quadratic performance index is
possible, and training of the neuro-controller can be simplified
by using the Ricatti equation. However, this approximation
is not possible for nonlinear systems, and hence a method of
minimizing the quadratic performance index is developed by
generalizing the BTT training algorithm.

B. Architecture for Optimal Tracking Neuro-Controller

Following the above observation, an OTNC is designed with
two neuro-controllers in order to control a nonlinear plant that
has a nonzero set point in steady state. An FFNC is constructed
to generate feedforward control input corresponding to the set
point, and trained by the well-known error backpropagation
algorithm. An FBNC is constructed to generate feedback
control input, and trained by a GBTT algorithm to minimize
the quadratic performance index.

An independent neural network named neuro-identifier is
used when the above two neuro-controllers are in training
mode. This network is trained to emulate plant dynamics and
to backpropagate an equivalent error or generalized delta [2]
to the controllers under training. Fig. 1 shows an architecture
for the optimal tracking neuro-controller for a nonlinear plant.
In the figure, the rapped delay operator A is defined as a
delay mapping from a sequence of scalar input, {z¢;)} to
a vector output with an appropriate dimension defined as
Fi—1) = (T@-1),Ba—2), > T(i—p))s Where p = n for the
output variable y, and p = m — 1 for the input variable u.

III. DESIGN OF NEURO-CONTROLLERS

The OTNC is made of three multilayer feedforward neural
networks: neuro-identifier, feedforward neuro-controller, and
feedback neuro-controller. A multilayer neural network rep-
resents a nonlinear function mapping multi-inputs to single
output with weight parameters and nonlinear sigmoid func-
tions.

A. Neuro-Identifier

The function of the neuro-identifier is to identify plant
dynamics. It is then used to backpropagate the equivalent error
to the neuro-controllers. Training the neuro-identifier can be
regarded as an approximation process of a nonlinear function
using input—output data sets [1].

A NARMA model (1) can be viewed as a nonlinear mapping
from (n + m)-dimensional input space to a one-dimensional
(1-D) output space

Yy = (X)) 1

where
Xy =
(y(k)ay(k—l)a s Yk—n—1) Uk) U(k—1)" " s u(k—m+1))

is regarded as input vector.
Therefore, the neuro-identifier for the plant can be repre-
sented as

dorny = F(Xay, W) (12)
where §j41) is the output estimated and W is the weight
parameter vector for the neuro-identifier.

Then, training of the necuro-identifier £ is to adjust the
weight parameters so that it emulates the nonlinear plant
dynamics. Input-output training patterns are obtained from the
operation history of the plant. The block diagram for training
the neuro-identifier is given in Fig. 2.

The objective of training the neuro-identifier is to reduce
the average error defined by

N
11, .
T=5 > 5 W) — Gy 13)
i=1
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Fig. 2. Block diagram for training the neuro-identifier.

where IV is the number of samples in a group of training set.

The equivalent error on the output node of the network for the

1th sampled data is defined as the negative of the gradient
aJ oJ
ot Bﬁz k1)

1

i A i
by = = N(y(k-)-l) -

Uky)- (4

This error is then used backward to compute an equiva-
lent error for a node in an arbitrary layer to update weight
parameters in the backpropagation algorithm (BPA).

Through the learning process, the plant characteristics are
stored in the weight parameters of the neuro-identifier. The
training can be regarded as finished when the average error
between the plant and the neuro-identifier outputs converges
to a small value, and the neuro-identifier is presumed to have
learned the plant characteristics approximately, i.e.,

Yooy = F( X)) = Iy = F(Xay, W), (15)

B. Feedforward Neuro-Controller

In designing a controller for a plant to follow an arbitrary
reference output, it is necessary to keep the steady-state
tracking error to zero. For this purpose the FENC is designed
to generate a control input which will maintain the plant output
to a given reference output in steady state. The FFNC is then
required to learn the inverse dynamics of the plant in steady
state. A novel approach is now proposed to develop the inverse
mapping with the aid of the neuro-identifier.

Note that the steady-state control input can be obtained by
Setting Y(x) = Yrot and U(yy = Urer for all k in the NARMA
model (1), ie.,

s Uref ) (16)

Yref = f(yref7 Yrefys ' "y Yref) Urefs Urefy " " *

or equivalently

Uref = J(Yref) an
which is the inverse function of (16). The inverse is not
unique in general and any one solution is sufficient for control
purpose. However, noting that the control input is the control
energy, the smallest solution of u,.s is preferred. The FFNC
network (7, as an inverse mapping of the plant in steady state,

can be developed by using the neuro-identifier F' as shown
in Fig. 3, i.e.,
upp, W) (18)

(19)

Qref = F(yref; Yrefy*
Uy = G(yref> W)

where uy; is the feedforward control input and §,.; is the
output of the neuro-identifier designed in (15). Training of
the FENC (19) is to adjust its weight parameters so that
the output of the neuro-identifier ¢t approximates the given
reference output y,e¢, and when the training is finished u Ff
approximates u,.¢. Training of the FFNC can be understood
as an approximation process of the inverse dynamics for the
plant in steady state. To train the FENC an equivalent error
is defined, which then is propagated back through the neuro-
identifier (15) that has been trained already.

The objective of training the FFNC is to reduce the average
error defined by

s Yrefs UFfsUffy -,

(Ve — Drar(ulf))? (20)

L\')Ir—l

where N is the number of samples in a group of training set.

To update the weight parameters in the FFNC the equivalent
error is propagated backward through the neuro-identifier. The
equivalent error on the output of the FFNC is defined as
the negative sensitivity of the above performance index with
respect to uyy, which can be calculated from the equivalent
error on the neuro-identifier input nodes

a7 0J O

8 =
8yref " ou I

ufy T

= 21
6uff

Since wuyy is applied to the first m input nodes of the
neuro-identifier, i.e., ({x)* = u%;,k =1,2,---,m, then
i B aJ ayref
U'ff k=1 yref Ik)

(22)

= Z %
k=1

where Sf,k is the equivalent error of the u s s-input node in the
neuro-identifier, which is computed by the BPA. Since uy;
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Fig. 3. Block diagram for training the feedforward controller.

is also the output of the FFNC, the equivalent error (22) can
directly be used as the equivalent error for the network G in
the BPA.

Training begins with small random values of weight pa-
rameters in the FFNC. This allows the feedforward control
input to grow from a small random value, and converge to
the smallest solution of u,.¢, which is preferred over all other
possible solutions.

At the end of the training, the weight parameters in the
FENC are adjusted so that the output of the neuro-identifier
follows a given reference output. Training is finished when
the average error between the neuro-identifier output and the
given reference output converges to a small value, and FFNC
has learned the steady-state inverse dynamics of the plant with
the help of the neuro-identifier

Yref = f(yrefa Yrefs " *  Yref, Urefs Urefy *** auref,)
~ gl‘ef, = F(yref, Yrefy* " * y Yref, ,u'ff; uffa Y uff) W)
Uset RUsf = G(Yret, W). (23)

C. Feedback Neuro-Controller

The role of the FBNC is to stabilize tracking error dynamics
when the plant output is following an arbitrarily given refer-
ence output. This objective can be achieved by minimizing the
quadratic performance index (2) discussed previously.

Noting that ures = ugs and ugy = g + ugp(r), the
performance index (2) can be modified as

N N
J= Z Je =13 Z(Q(yref = Yt)” + Rlugppy)?) (24)
k=1 k=1
where ugy(x) is the feedback control input.

From the NARMA model (1), the feedback control input

can be viewed as an inverse mapping

Wby = P(Yrets Y(k), Y(h—1)1 " Y(h—n+1)» Y(k—1)

U(k—2)," " * s U(k—m-+1)) (25)

where y,.f indicates the nonlinear dependency of the input
function on the set-point. The corresponding FBNC can be
represented as a nonlinear network H

Ugn(ky = H (Yret, Yy Yk—1)s " » Y(k—nt1) U(k—1)

U(h—)s s Uiomt1)s W) (26)

Since the target value for the optimal feedback control
Ugsp(k) is not available for training, traditional BPA method
is not applicable here. Therefore, the FBNC will learn the
control law by trial and error as it drives the neuro-identifier
to generate the equivalent error for backpropagation.

The learning process by trial and error consists of two parts.
First, from the given initial state and an arbitrarily given
reference set-point, the combined FFNC and FBNC drive
the neuro-identifier for N steps. Second, update the weight
parameters in the FBNC using the equivalent error generated
by the GBTT algorithm developed in the following section.

D. Generalized Backpropagation-Through-Time Algorithm

The GBTT is to generate an equivalent error from a general
quadratic cost function (24), and it is an extension of the BTT
algorithm of Werbos [10]. The original BTT was for the cost
function with output error only. On the other hand, the GBTT
is for the general quadratic cost function (24) which includes
not only output errors, but also input variables.

The GBTT is based upon output and input sensitivities of
the cost function defined by

5’;2—8‘], k=1,2,3,--- N+1  (27)
(k)
oJ
sk 2 ., k=0,1,2,---,N. (28)
8u(k)
Since, for a fixed feedforward control
o= o 9] duy
“ ) Ou(ry Ou gy (k)
4]
__ 8J O(uss + ugpr) _ aJ _ 65 29)
uky  ugn(r) )

the subscript fb will be dropped in the following development.

1) Outpur Sensitivity Equation (OSE): An output y() at an
arbitrary time-step £ influences both the plant dynamics (1)
and the inverse dynamics (25). Since the plant dynamics (1)
is defined with n delayed output variables, an arbitrary output
Y(ky Will influence the plant dynamics for the next n steps, i.e.,
is a function of y) for 2 = 1,2,-.-,n. Similarly, since the
inverse dynamics (25) also has n delayed output variables, an
output y(x) will influence the input for the next n steps, i.e.,
is a function of y,) for ¢ = 0,1,2,---,n — 1.
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Recall that the performance index (24) is defined on a finite  networks, the neuro-identifier F' and the feedback neuro-

interval, i.e., controller H, to yield
J= J(y(j+1)) U(5)s 7=12, N) (30) Mo oF; et 0H;
55 = Z 623—@(:) + Z 6"8“ + Q(Yret — Gry) (35)
Thus, the gradient of J with respect to an output g for zz’ﬁ;ll zzﬁv
some k is ~ =
k+m k+m—1
OF; . OH;
n n— (Sk = : ! (S,Z LA R . 36
0/ _ 3~ ) Oyguriy Zl aJ u 15%:‘1 Y B i:%;l Bugy | AHE) (36)
Sy A B v | A Buges iSN+1 i<N
E+i<N41 Ei<N
3U(k +i) It should be noted that the last terms in OSE and ISE are,
By — Q(Yret — Y(k)) respectively, the error terms for the output and input variables,
- (k) fn1 and the terms under summation operations are the error (or
_ Z oJ 8y<i Z 8J Oug delta) terms bac_kpropagated through the networks F' and H.
= 2 v e = Augiy Oy For example, &, (0F;/0jx)) [or 82 (OF; [ Oury)] is the error
i<N+1 6, (or &;,) backpropagated through the network [ to the input
— Q(Yret — Y(i))- (31) mnode gy (Or ue)).

The objective of the GBTT is to compute the sensitivity
8%, which will be used as the equivalent error for training of

By using the definition of sensitivities, (27) and (28)
FBNC. This can be achieved by solving the OSE (35) and ISE

k+n kdtn—1 : ¥ s ’
; OU(s) dug;) (36) backward starting from j = N + 1:
5k = 5 - 8, + QYret — ¥ N 4L
’ g;l, * By ; Ty T (k))- j L1
iSN+1 <N .
1) =0
(32) u

65\7-}—1 = Q(yref - Q(N-{—l))

Note that this OSE depends on the input sensitivities as well. .

2) Input Sensitivity Equation (ISE): The ISE can be de- Jj=N:
rived in a way similar to the OSE. OF s

Since the plant dynamics (1) is defined with m delayed 6N :657 +18—+
input variables, while the inverse dynamics (25) is with %)
m — 1 delayed input variables, y44) is a function of wu,
for i = 1,2,---,m, and wu(r4y is a function of wu) for
i =1,2,---,m— 1.

— Rugp(y)

(5 __6N+18FN+1 +5N 8HN

~ + ref — U
v = S Y 3w, Q(Yret — U(wv))

Thus, the gradient of J with respect to an input wy(x) for j=N-1
ki
some k is R OF N1 L OFy Vo OH
87 T Oyt e N Yo Ouw-ny Y Ouv-iy " Ouvon
Ougry ; ‘9y(k+z) Ouy) ; OU(k44) — Rugpv-1)
E+i<N+1 k+i<N SN-1 _ gN+1 OF N1 Ny OFn Ny OHpy
Oty + Rupyny Y Voo 9gw-ny Y O0hnn-1y " 99—
&u’(k) (N—1) O N-1 OHn_1 R
k+m k+m—1 + 6y 54 + Qrer — f(v-1))
_ Z dJ Oy Z 0J Ougy Y(N-1)
i O Oy A Fua) Fua) j=N-2
iSN+1 i<N
‘|‘R’u,fb(k)' (33) 6(N 2) 5N+1 (9FN+1 +6N 8FN +§N_1 BFN_I
* Yo dun—zy Y Own—zy Y Ouwn_g
By using the definition of sensitivities, (27) and (28)
~ OHn No1 OHN_1
+o, 5 +6, 53— — Rupyv-z)
k+m ay() k4+m—1 87.L() 8U(N 2) 8’LL(N_2)
k_ i 9YG i GUG
= D By T 2 Sugyy, Bt B9 nea v O o OFN e OB
e i Ogn-2) ' Ohw-2) Oy(n—-2)
Y OHN LN OHNn_ L, gN- 5 OHpN_2
This ISE also depends on the output sensitivities, and both Y 0wy " OUn—2y “ OYw-2
are coupled to one another. + QYret — v—2))

Since the plant dynamics (1) and the inverse dynamics (25)
are not known, they are approximated by the corresponding
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ji=k of vector input, {'(;y }, where Z(;) = (T (1), %(i,2),"* * s T(i,n))s

Sk =5k+m% R o OF 41 4 ghtm-1

u Y 8U(k) y au(k)
8‘H’H-m—l k OHk+1
‘—+...+6+1 — Ru
Oy dux,) Fb(k)
sk :6§+n8_ﬁ;’“i£ R 5§+1% + gt
6y(k) 8y(k)
.%__1_+_,,+6k+1% kaHk
Fj(r) By “O9w

+ Q(Yret — Y()))-

3) Forward Simulator: Before solving the OSE and ISE,
the error terms need to be generated. This can be done by
driving the neuro-identifier with the controllers FFNC and
FBNC for N steps forward. This process is illustrated by the
forward simulator shown in Fig. 4, where the tapped delay
operator is defined in Fig. 1.

Starting from initial conditions, y(1), 4(g), the forward simu-
lator generates sequences of inputs, ugy(1), pp(2)s** * Usb(N)>
and outputs, %y, ¥(3),"*»Uv+1). These variables provide
the error terms (yrer — J(xy) and ugy(xy for any k.

4) Backward Simulator: The OSE and ISE are to be sim-
ulated backward in order to backpropagate the error terms.
This can be performed by the backward simulator shown in
Fig. 5, where the summed advance operator V is defined as a
“dual” of the tapped delay operator mapping from a sequence

to a scalar output defined as ;) = X3_; itk k)-

The backward simulator can be shown to be the dual of
the forward simulator, which is then constructed by using
the duality principle, i.e., reversing the direction of arrows,
interchanging the summers and nodes, and replacing the tapped
delay operators with the summed advance operators.

Using the errors generated by the forward simulator, the
backward simulator runs backward starting from ¢ = N. It
generates the sensitivities &, and 6%. Noting that &, is in
the output node of the FBNC, it is used as the equivalent error
in computing the weight parameter adjustment in the FBNC,
AW

The process of the GBTT training algorithm is summarized
as follows:

1) Set the weight parameters of the FBNC with small
random numbers.

.2) Set the reference output and initial state with random
numbers in the operation region of the plant.

3) Run the forward simulator for N steps forward from
i = 1.

4) Using the operation result in Step 3), run the back-
ward simulator backward from ¢ = N to evaluate the
equivalent error §° and the weight adjustment vector
AW?,

5) Update the weight parameters in the FBNC by using the
average of the weight adjustment vectors found in Step
4).
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M=80 g : mass of cart
m=20 g : mass of pendulum
L =2.0 m: length of arm

Fig. 6.

Inverted pendulum.

6) Go to Step 2).

Training of the feedback controller is finished when the
average decrease of the cost function converges to a small
value for arbitrary reference outputs and initial conditions.
Since the training algorithm is essentially a gradient descent
method, the local minimum problem is a possibility. However,
this problem can be avoided by starting with different initial
weight parameters or with different numbers of nodes in the
feedback controller [2], [18].

IV. CASE STUDY

A prototypical control problem that has been widely used
for neural network application is the pole balancing or the
inverted pendulum problem. The problem involves balancing
a pole hinged on a cart as shown in Fig. 6. This problem is
of interest because it describes an inherently unstable system
and is representative of a wide class of problems with severe
nonlinearity in a broad operation region. Additional details
of the pole balancing experiments including simulations can
be found in [14] and [19]-{21]. In these works, the control
problem has been limited to the case of balancing the pole at
the vertical position.

The control objective of the pole-balancing problem in this
paper is to extend the results of previous efforts by keeping
the pole at an arbitrary angle, not necessarily at the vertical
position, while minimizing a general quadratic cost function.
Since a steady acceleration is required to maintain the pole
at an angle, we assume that the cart can travel indefinitely in
either direction. The OTNC is constructed and trained by the
proposed method to meet the following control objectives:

1) Set the pendulum to an arbitrarily given reference angle.

2) Minimize the quadratic cost function while tracking the

reference angle.

A. Training of the Neuro-Identifier

The nonlinear differential equation of the plant dynamics is
as follows:

(M + m)i& + mLcos (0)§ — mLsin (6)§% =u
mé cos () + mLb =mgsin () (37)

where the variables and the parameters are defined in Fig. 6.
The dynamics has severe nonlinearity when the angle deviates
far from zero, in which case it is difficult to solve the control
problem by any conventional method.
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A paradigm for the neuro-identifier is chosen by trial
and error. It consists of two hidden layers with 40 nodes
each, an input layer with six input nodes and an output
layer with one node. Three of the six input nodes are for
output history, y(x), Y(k—1), Y(k—2); and two for input history,
U(k)> U(k—1); and one for bias input, 1.0. Training patterns
of the neuro-identifier are generated from the mathematical
model with random initial value -and random input within the
operation region of £1.1 [rad]. Discrete-time training patterns
are obtained by applying the modified Euler method with time
step-size of 0.13 [s] in simulation.

To avoid oscillation during training stage, weight parameters
are corrected from the average of corrections calculated for
every 10 patterns. After training the neuro-identifier for one
hour in a SUN-SPARC2 workstation, it is tested with arbitrary
initial conditions and sinusoidal inputs of different amplitude,
which case is presented in Fig. 7. The neuro-identifier approx-
imates the plant very closely and is sufficient for training the
neuro-controllers.

B. Training of the Feedforward Controller

The FENC has two hidden layers with 30 nodes each. The
input layer has two nodes: one for reference output y,er and
one for the bias input, and the output layer has one node for
the control uy¢. The reference output is given randomly to be
within the operation region of +0.9 [rad] to train the FFNC,
which is coupled with the neuro-identifier and the plant.

After training the FENC for one hour, it is tested with
a reference output varying within the operation region.- Al-
though the plant tracks the time-varying reference output, error
remains small as shown in Fig. 8.

C. Training of the Feedback Neuro-Controller

The FBNC has two hidden layers with 30 nodes each.
The input layer has five nodes: three for output history,
Y(k)s Y(k—1)s Y(k—2); one for previous input, w(k—_1); and one
for the bias input. The cost function for the N-step ahead
optimal controller is set as

N
J = % Z(l.O(y,ef - y(k_|_1))2 -+ O.S(uﬂ,(k))z). (38)
k=1

The FBNC is trained once for an initial condition and a
reference output, which are randomly selected while driving
the plant for IV steps. This training is repeated for other initial
conditions and reference outputs. Each training is performed
in two phases. First, the training is done with small N (= 3)
since the controller in the beginning has little knowledge of
control. This also prevents the pendulum from falling down.
Then, the step is increased gradually to N = 15. The second
phase training is carried on with N fixed at 15.

After training the FBNC with the GBTT algorithm for two
hours, it is tested with several nonzero set-points as presented
in Fig. 9. It shows a larger overshoot for a larger set-point.
A larger overshoot corresponds to an operating condition with
severe nonlinearity.
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Fig. 8. Training result of the feedforward neuro-controller.

Fig. 10 shows a case for a set-point changing at each It is seen that the OTNC for a nonlinear system behaves
40 time-steps. The trajectories of the plant output, reference in a way similar to the usual optimal tracking controller
output, and the control input are presented in the figure. for a linear quadratic problem [12]; the shapes of output
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Fig. 11. Feedforward and the feedback control inputs for a changing reference set-point.

trajectories are typical fast responses with reasonable over- reference output in steady state. On the other hand, the FBNC
shoots. Fig. 11 shows the corresponding feedforward and generates the control input corresponding to the regulating
the feedback control inputs for the changing set-point. The error between the reference and the plant outputs during
FFNC generates the control input corresponding only to the transient.
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Fig. 12. Performance of the FBNC with different weight parameter R: (a)
plant output and (b) control input.

D. Performance Evaluation

The general quadratic performance index (2) was used for
the optimal tracking neuro-controlller. The performance index
depends on the weighting factors ¢ and R, and the number
of steps for summation, N. Fig. 12 shows the role of the
weighting factor R when other parameters are fixed with @ =
1.0, and N = 15. As R increases the response slows down,
becoming overdamped, and control effort becomes less with
smaller magnitudes in force. This is due to the performance
index giving more weight to the control effort as R increases.

The impact of N is also shown in Fig. 13. As N increases
the response becomes less oscillating and more stable. This is
because the performance index accumulates the error, both the
input and output errors, over longer duration. This also reduces
the control effort in the long run. When N becomes smaller
than five, the plant becomes unstable. This demonstrates the
importance of the general cost function, which is summed over
some finite-time interval, compared to the usual instantaneous
error function (corresponding to the case with [V = 1).

V. CONCLUSIONS

For an optimal tracking control problem for nonlinear
dynamic plants, a new architecture, the OTNC, is developed
using feedback and feedforward controls.
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Fig. 13. Performance of the FBNC with different summation size N: (a)
plant output and (b) control input.

First, the FENC is introduced to solve the tracking problem
with a nonzero set-point. A novel training method for the
FFNC is developed by using the concept of an inverse mapping
to generate the feedforward control input corresponding to the
output set-point. Second, the FBNC is designed to solve an
optimal regulator problem with general quadratic cost function.
A GBTT training algorithm is developed to train the FBNC.
The proposed OTNC scheme is demonstrated in a typical
nonlinear plant, an inverted pendulum. The role of the general
quadratic cost function is also demonstrated in the simulation.
Simulation results show good performance over a wide range
of nonlinear operation and the possibility of using the OTNC
for the optimal tracking control of other nonlinear systems.
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